Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.733
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Islets ; 16(1): 2344622, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38652652

RESUMO

Chronically elevated levels of glucose are deleterious to pancreatic ß cells and contribute to ß cell dysfunction, which is characterized by decreased insulin production and a loss of ß cell identity. The Krüppel-like transcription factor, Glis3 has previously been shown to positively regulate insulin transcription and mutations within the Glis3 locus have been associated with the development of several pathologies including type 2 diabetes mellitus. In this report, we show that Glis3 is significantly downregulated at the transcriptional level in INS1 832/13 cells within hours of being subjected to high glucose concentrations and that diminished expression of Glis3 is at least partly attributable to increased oxidative stress. CRISPR/Cas9-mediated knockdown of Glis3 indicated that the transcription factor was required to maintain normal levels of both insulin and MafA expression and reduced Glis3 expression was concomitant with an upregulation of ß cell disallowed genes. We provide evidence that Glis3 acts similarly to a pioneer factor at the insulin promoter where it permissively remodels the chromatin to allow access to a transcriptional regulatory complex including Pdx1 and MafA. Finally, evidence is presented that Glis3 can positively regulate MafA transcription through its pancreas-specific promoter and that MafA reciprocally regulates Glis3 expression. Collectively, these results suggest that decreased Glis3 expression in ß cells exposed to chronic hyperglycemia may contribute significantly to reduced insulin transcription and a loss of ß cell identity.


Assuntos
Regulação para Baixo , Glucose , Células Secretoras de Insulina , Insulina , Proteínas Repressoras , Células Secretoras de Insulina/metabolismo , Glucose/metabolismo , Glucose/farmacologia , Animais , Insulina/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Transativadores/genética , Transativadores/metabolismo , Linhagem Celular , Ratos , Fatores de Transcrição Maf Maior/genética , Fatores de Transcrição Maf Maior/metabolismo , Estresse Oxidativo/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
2.
Nat Commun ; 15(1): 3213, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615060

RESUMO

Oxidative stress-induced lipid accumulation is mediated by lipid droplets (LDs) homeostasis, which sequester vulnerable unsaturated triglycerides into LDs to prevent further peroxidation. Here we identify the upregulation of lipopolysaccharide-binding protein (LBP) and its trafficking through LDs as a mechanism for modulating LD homeostasis in response to oxidative stress. Our results suggest that LBP induces lipid accumulation by controlling lipid-redox homeostasis through its lipid-capture activity, sorting unsaturated triglycerides into LDs. N-acetyl-L-cysteine treatment reduces LBP-mediated triglycerides accumulation by phospholipid/triglycerides competition and Peroxiredoxin 4, a redox state sensor of LBP that regulates the shuttle of LBP from LDs. Furthermore, chronic stress upregulates LBP expression, leading to insulin resistance and obesity. Our findings contribute to the understanding of the role of LBP in regulating LD homeostasis and against cellular peroxidative injury. These insights could inform the development of redox-based therapies for alleviating oxidative stress-induced metabolic dysfunction.


Assuntos
Proteínas de Fase Aguda , Gotículas Lipídicas , Glicoproteínas de Membrana , Proteínas de Fase Aguda/metabolismo , Proteínas de Transporte/metabolismo , Homeostase , Gotículas Lipídicas/metabolismo , Lipopolissacarídeos/metabolismo , Glicoproteínas de Membrana/metabolismo , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Triglicerídeos
3.
Int J Biol Sci ; 20(6): 2008-2026, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617548

RESUMO

Renal aging may lead to fibrosis and dysfunction, yet underlying mechanisms remain unclear. We explored whether deficiency of the Polycomb protein Bmi1 causes renal aging via DNA damage response (DDR) activation, inducing renal tubular epithelial cell (RTEC) senescence and epithelial-mesenchymal transition (EMT). Bmi1 knockout mice exhibited oxidative stress, DDR activation, RTEC senescence, senescence-associated secretory phenotype (SASP), and age-related fibrosis in kidneys. Bmi1 deficiency impaired renal structure and function, increasing serum creatinine/urea, reducing creatinine clearance, and decreasing cortical thickness and glomerular number. However, knockout of the serine-threonine kinase Chk2 alleviated these aging phenotypes. Transcriptomics identified transforming growth factor beta 1 (TGFß1) upregulation in Bmi1-deficient RTECs, but TGFß1 was downregulated upon Chk2 knockout. The tumor suppressor protein p53 transcriptionally activated TGFß1, promoting EMT in RTECs. Bmi1 knockout or oxidative stress (induced with H2O2) increased TGFß1 expression, and EMT in RTECs and was partly reversed by p53 inhibition. Together, Bmi1 deficiency causes oxidative stress and DDR-mediated RTEC senescence/SASP, thus activating p53 and TGFß1 to induce EMT and age-related fibrosis. However, blocking DDR (via Chk2 knockout) or p53 ameliorates these changes. Our study reveals mechanisms whereby Bmi1 preserves renal structure and function during aging by suppressing DDR and p53/TGFß1-mediated EMT. These pathways represent potential targets for detecting and attenuating age-related renal decline.


Assuntos
Peróxido de Hidrogênio , Proteína Supressora de Tumor p53 , Animais , Camundongos , Envelhecimento , Creatinina , Dano ao DNA/genética , Transição Epitelial-Mesenquimal/genética , Rim , Estresse Oxidativo/genética , Complexo Repressor Polycomb 1/genética , Proteínas Proto-Oncogênicas/genética , Proteína Supressora de Tumor p53/genética
4.
Cancer Rep (Hoboken) ; 7(4): e1978, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38599581

RESUMO

BACKGROUND AND AIMS: Oncogenesis and tumor development have been related to oxidative stress (OS). The potential diagnostic utility of OS genes in hepatocellular carcinoma (HCC), however, remains uncertain. As a result, this work aimed to create a novel OS related-genes signature that could be used to predict the survival of HCC patients and to screen OS related-genes drugs that might be used for HCC treatment. METHODS: We used The Cancer Genome Atlas (TCGA) database and the Gene Expression Omnibus (GEO) database to acquire mRNA expression profiles and clinical data for this research and the GeneCards database to obtain OS related-genes. Following that, biological functions from Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) were performed on differentially expressed OS-related genes (DEOSGs). Subsequently, the prognostic risk signature was constructed based on DEOSGs from the TCGA data that were screened by using univariate cox analysis, and the Least Absolute Shrinkage and Selection Operator (LASSO) regression, and multivariate cox analysis. At the same time, we developed a prognostic nomogram of HCC patients based on risk signature and clinical-pathological characteristics. The GEO data was used for validation. We used the receiver operating characteristic (ROC) curve, calibration curves, and Kaplan-Meier (KM) survival curves to examine the prediction value of the risk signature and nomogram. Finally, we screened the differentially expressed OS genes related drugs. RESULTS: We were able to recognize 9 OS genes linked to HCC prognosis. In addition, the KM curve revealed a statistically significant difference in overall survival (OS) between the high-risk and low-risk groups. The area under the curve (AUC) shows the independent prognostic value of the risk signature model. Meanwhile, the ROC curves and calibration curves show the strong prognostic power of the nomogram. The top three drugs with negative ratings were ZM-336372, lestaurtinib, and flunisolide, all of which inversely regulate different OS gene expressions. CONCLUSION: Our findings indicate that OS related-genes have a favorable prognostic value for HCC, which sheds new light on the relationship between oxidative stress and HCC, and suggests potential therapeutic strategies for HCC patients.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Estresse Oxidativo/genética , Nomogramas , Área Sob a Curva
5.
Comput Biol Med ; 174: 108346, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38581999

RESUMO

Non-Communicable Diseases (NCDs) significantly impact global health, contributing to over 70% of premature deaths, as reported by the World Health Organization (WHO). These diseases have complex and multifactorial origins, involving genetic, epigenetic, environmental and lifestyle factors. While Genome-Wide Association Study (GWAS) is widely recognized as a valuable tool for identifying variants associated with complex phenotypes; the multifactorial nature of NCDs necessitates a more comprehensive exploration, encompassing not only the genetic but also the epigenetic aspect. For this purpose, we employed a bioinformatics-multiomics approach to examine the genetic and epigenetic characteristics of NCDs (i.e. colorectal cancer, coronary atherosclerosis, squamous cell lung cancer, psoriasis, type 2 diabetes, and multiple sclerosis), aiming to identify novel biomarkers for diagnosis and prognosis. Leveraging GWAS summary statistics, we pinpointed Single Nucleotide Polymorphisms (SNPs) independently associated with each NCD. Subsequently, we identified genes linked to cell cycle, inflammation and oxidative stress mechanisms, revealing shared genes across multiple diseases, suggesting common functional pathways. From an epigenetic perspective, we identified microRNAs (miRNAs) with regulatory functions targeting these genes of interest. Our findings underscore critical genetic pathways implicated in these diseases. In colorectal cancer, the dysregulation of the "Cytokine Signaling in Immune System" pathway, involving LAMA5 and SMAD7, regulated by Hsa-miR-21-5p, Hsa-miR-103a-3p, and Hsa-miR-195-5p, emerged as pivotal. In coronary atherosclerosis, the pathway associated with "binding of TCF/LEF:CTNNB1 to target gene promoters" displayed noteworthy implications, with the MYC factor controlled by Hsa-miR-16-5p as a potential regulatory factor. Squamous cell lung carcinoma analysis revealed significant pathways such as "PTK6 promotes HIF1A stabilization," regulated by Hsa-let-7b-5p. In psoriasis, the "Endosomal/Vacuolar pathway," involving HLA-C and Hsa-miR-148a-3p and Hsa-miR-148b-3p, was identified as crucial. Type 2 Diabetes implicated the "Regulation of TP53 Expression" pathway, controlled by Hsa-miR-106a-5p and Hsa-miR-106b-5p. In conclusion, our study elucidates the genetic framework and molecular mechanisms underlying NCDs, offering crucial insights into potential genetic/epigenetic biomarkers for diagnosis and prognosis. The specificity of pathways and related miRNAs in different pathologies highlights promising candidates for further clinical validation, with the potential to advance personalized treatments and alleviate the global burden of NCDs.


Assuntos
Inflamação , MicroRNAs , Doenças não Transmissíveis , Estresse Oxidativo , Polimorfismo de Nucleotídeo Único , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Inflamação/genética , Estresse Oxidativo/genética , Estudo de Associação Genômica Ampla , Transdução de Sinais/genética , Epigênese Genética
6.
Mol Biol Rep ; 51(1): 588, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38683237

RESUMO

BACKGROUND: Mechanisms by which varicocele causes infertility are not clear and few studies have reported that some miRNAs show expression alterations in men with varicocele. Recently, sperm promoter methylation of MLH1 has been shown to be higher in men diagnosed with varicocele. This study aimed to assess the potential effects of miR-145, which was determined to target MLH1 mRNA in silico on sperm quality and function in varicocele. METHODS: Sperm miR-145 and MLH1 expressions of six infertile men with varicocele (Group 1), nine idiopathic infertile men (Group 2), and nine fertile men (control group) were analyzed by quantitative PCR. Sperm DNA fragmentation was evaluated by TUNEL and the levels of seminal oxidative damage and total antioxidant capacity were analyzed by ELISA. RESULTS: Our results have shown that sperm expression of miR-145 was decreased in Group 1 compared to Group 2 (P = 0.029). MLH1 expression was significantly higher in Group 2 than the controls (P = 0.048). Total antioxidant level and sperm DNA fragmentations of Group 1 and Group 2 were decreased (P = 0.001 and P = 0.011, respectively). Total antioxidant capacity was positively correlated with sperm concentration (ρ = 0.475, P = 0.019), total sperm count (ρ = 0.427, P = 0.037), motility (ρ = 0.716, P < 0.0001) and normal morphological forms (ρ = 0.613, P = 0.001) and negatively correlated with the seminal oxidative damage (ρ=-0.829, P = 0.042) in varicocele patients. CONCLUSION: This is the first study investigating the expressions of sperm miR-145 and MLH1 in varicocele patients. Further studies are needed to clarify the potential effect of miR-145 on male fertility.


Assuntos
Fragmentação do DNA , Infertilidade Masculina , MicroRNAs , Proteína 1 Homóloga a MutL , Estresse Oxidativo , Espermatozoides , Varicocele , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Varicocele/genética , Varicocele/metabolismo , Varicocele/patologia , Estresse Oxidativo/genética , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , Espermatozoides/metabolismo , Adulto , Infertilidade Masculina/genética , Infertilidade Masculina/metabolismo , Sêmen/metabolismo , Motilidade dos Espermatozoides/genética , Antioxidantes/metabolismo
7.
PLoS One ; 19(3): e0298860, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38498431

RESUMO

BACKGROUND: Oxidative stress is a significant contributor to the development of various diseases, and the oxidative balance score (OBS) is a valuable tool for assessing the impact of dietary and lifestyle factors on oxidative stress in humans. Nevertheless, the precise relationship between OBS and thyroid function in adults remains elusive. METHODS: This cross-sectional study comprised 6222 adult participants drawn from the National Health and Nutrition Examination Survey (NHANES) conducted from 2007 to 2012. Employing weighted multivariable linear regression modeling, the study estimated the connection between OBS quartiles and thyroid functions. The causal relationship between OBS components and thyroid function was analyzed by Mendelian randomization (MR). RESULTS: We found a significant negative correlation between OBS and free thyroxine (FT4) and total thyroxine (TT4). Univariate and multivariate MR Analyses showed a causal relationship between BMI and FT4. Copper, smoking, and riboflavin showed a causal relationship with FT4 after moderation. CONCLUSION: We found that a lifestyle high in antioxidant exposure reduced FT4 and TT4 levels in the population. We suggest that BMI, Copper, and Riboflavin are important factors in the regulation of FT4 levels.


Assuntos
Cobre , Análise da Randomização Mendeliana , Adulto , Humanos , Inquéritos Nutricionais , Estudos Transversais , Glândula Tireoide , Tiroxina , Estresse Oxidativo/genética , Riboflavina , Tireotropina
8.
J Int Med Res ; 52(3): 3000605241232560, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38520254

RESUMO

OBJECTIVE: To construct a prognostic model of a breast cancer-related oxidative stress-related gene (OSRG) signature using machine learning algorithms. METHODS: The OSRGs of breast cancer were constructed by least absolute shrinkage and selection operator (LASSO) and multivariate Cox regression analysis. The Cancer Genome Atlas (TCGA) was used to analyse the gene expression and prognostic value. The Human Protein Atlas was used to analyse the protein expression of hub genes. Receiver operating characteristic analysis, calibration curve and decision curve analysis were used to predict the stability of this model. RESULTS: The area under the curve of 1-, 3- and 5-year overall survival were 0.751, 0.707 and 0.645 in the TCGA training dataset; and 0.692, 0.678 and 0.602 in the TCGA testing dataset, respectively. Calibration plot showed good agreement between predicted probabilities and observed outcomes. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) pathway analysis indicated that multiple cancer-related pathways were highly enriched in the high-risk group. Immune infiltration analysis showed immune cells and their functions may play a key role in the development and mechanism of breast cancer. CONCLUSIONS: This new OSRG signature was associated with the immune infiltration and it might be useful in predicting the prognosis in patients with breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Estresse Oxidativo/genética , Mama , Algoritmos , Aprendizado de Máquina , Prognóstico
9.
Aging (Albany NY) ; 16(5): 4469-4502, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38441550

RESUMO

BACKGROUND: Prostate cancer is the most common malignancy among men worldwide, and its diagnosis and treatment are challenging due to its heterogeneity. METHODS: Integrating single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data, we identified two molecular subtypes of prostate cancer based on dysregulated genes involved in oxidative stress and energy metabolism. We constructed a risk score model (OMR) using common differentially expressed genes, which effectively evaluated prostate cancer prognosis. RESULTS: Our analysis demonstrated a significant correlation between the risk score model and various factors, including tumor immune microenvironment, genomic variations, chemotherapy resistance, and immune response. Notably, patients with low-risk scores exhibited increased sensitivity to chemotherapy and immunotherapy compared to those with high-risk scores, indicating the model's potential to predict patient response to treatment. Additionally, our investigation of MXRA8 in prostate cancer showed significant upregulation of this gene in the disease as confirmed by PCR and immunohistochemistry. Functional assays including CCK-8, transwell, plate cloning, and ROS generation assay demonstrated that depletion of MXRA8 reduced the proliferative, invasive, migratory capabilities of PC-3 cells, as well as their ROS generation capacity. CONCLUSIONS: Our study highlights the potential of oxidative stress and energy metabolism-related genes as prognostic markers and therapeutic targets in prostate cancer. The integration of scRNA-seq and bulk RNA-seq data enables a better understanding of prostate cancer heterogeneity and promotes personalized treatment development. Additionally, we identified a novel oncogene MXRA8 in prostate cancer.


Assuntos
Oncogenes , Neoplasias da Próstata , Humanos , Masculino , Metabolismo Energético/genética , Estresse Oxidativo/genética , Prognóstico , Neoplasias da Próstata/genética , Espécies Reativas de Oxigênio , Microambiente Tumoral/genética , Proteínas de Membrana/genética , Imunoglobulinas/genética
10.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 250-256, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430014

RESUMO

The yeast Candida albicans is one of the most aggressive opportunistic pathogens in immunocompromised patients. The ability of the yeast to withstand stresses and radicals is of great concern. In the present study, four isolates of C. albicans were taken from patients with oral candidiasis and grown on RPMI for 24 hours at 37°C. Then, they were exposed to various concentrations of oxidative (H2O2) and nitrosative (HNO3) stress for two hours, and gene expression rates were measured through RT-PCR. After initial biofilm formation steps and growth validation, RNA extracted from the yeast and gene expression status were evaluated. Upon treatment with H2O2, the gene expression profile for ALS1, MLH1, and EXO1 showed approximately a fold increase in expression. While within HNO3 the yeast gene expression exhibited a dramatic increase in ALS1 up to 217 folds, while others such as MLH1, HWP1, and ERG11 showed a one-fold increase in the expression rate. The findings of this research indicate a considerable expression activity within the biofilm of Candida albicans, increased rate of DNA mismatch repair and break fixation may indicate the ability of the yeast to tolerate high concentrations of free radicals. It paves the way toward understanding the pathogenicity of the yeast and its survival capability inside macrophages. The study also revealed that the biofilm strategy of the yeast is more active within these stresses.


Assuntos
Candida albicans , Peróxido de Hidrogênio , Humanos , Candida albicans/genética , Peróxido de Hidrogênio/farmacologia , Oxirredução , Virulência/genética , Estresse Oxidativo/genética , Biofilmes
11.
Chem Biol Drug Des ; 103(2): e14491, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38404215

RESUMO

N6-methyladenosine (m6 A) modification has been reported to have roles in modulating the development of diabetic cataract (DC). Methyltransferase-like 3 (METTL3) is a critical m6 A methyltransferase involving in m6 A modification activation. Here, we aimed to explore the action and mechanism of METTL3-mediated maturation of miR-4654 in DC progression. Human lens epithelial cells (HLECs) were exposed to high glucose (HG) to imitate DC condition in vitro. Levels of genes and proteins were tested via qRT-PCR and western blotting assays. The proliferation and apoptosis of HLECs were evaluated by cell counting kit-8, 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays, respectively. Oxidative stress was analyzed by detecting the contents of reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA). The binding of miR-4654 and SOD2 was confirmed by dual-luciferase reporter assay. The m6 A-RNA immunoprecipitation (MeRIP) assay detected the m6 A modification profile. Thereafter, we found that miR-4654 expression was elevated in DC samples and HG-induced HLECs. MiR-4654 knockdown reversed HG-mediated apoptosis and oxidative stress in HLECs. Mechanistically, miR-4654 directly targeted SOD2, silencing of SOD2 abolished the protective effects of miR-4654 knockdown on HLECs under HG condition. In addition, METTL3 induced miR-4654 maturation through promoting pri-miR-4654 m6 A modification, thereby increasing miR-4654 content in HLECs. METTL3 was highly expressed in DC samples and HG-induced HLECs, METTL3 deficiency protected HLECs against HG-mediated apoptotic and oxidative injury via down-regulating miR-4654. In all, METTL3 induced miR-4654 maturation in a m6 A-dependent manner, which was then reduced SOD2 expression, thus promoting apoptosis and oxidative stress in HLECs, suggesting a novel path for DC therapy.


Assuntos
Catarata , Complicações do Diabetes , MicroRNAs , Superóxido Dismutase , Humanos , Apoptose , Catarata/genética , Catarata/metabolismo , Células Epiteliais/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
12.
Aging (Albany NY) ; 16(4): 3973-3988, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38385979

RESUMO

BACKGROUND: Testicular cancer is fairly rare but can affect fertility in adult males. Leucine-rich repeats- and WD repeat domain-containing protein 1 (LRWD1) is a sperm-specific marker that mainly affects sperm motility in reproduction. Our previous study demonstrated the impact of LRWD1 on testicular cancer development; however, the underlying mechanisms remain unclear. METHODS: In this study, various plasmids associated with LRWD1 and miR-320a manipulation were used to explore the roles and regulatory effects of these molecules in NT2D1 cellular processes. A Dual-Glo luciferin-luciferase system was used to investigate LRWD1 transcriptional activity, and qRT-PCR and western blotting were used to determine gene and protein expression. RESULTS: The results suggested that miR-320a positively regulated LRWD1 and positively correlated with NT2D1 cell proliferation but negatively correlated with cell migration and invasion ability. In addition, the miRNA-ribonucleoprotein complex AGO2/FXR1 was shown to be essential in the mechanism by which miR-320a regulates LRWD1 mRNA expression. As miR-320a was required to regulate LRWD1 expression through the AGO2 and FXR1 complex, eEF2 and eLF4E were also found to be involved in miR-320a increasing LRWD1 expression. Furthermore, miR-320a and LRWD1 were responsive to oxidative stress, and NRF2 was affected by the presence of miR-320a in response to ROS stimulation. CONCLUSIONS: This is the first study showing the role of miR-320a in upregulating the testicular cancer-specific regulator LRWD1 and the importance of the AGO2/FXR1 complex in miR-320a-mediated upregulation of LRWD1 during testicular cancer progression.


Assuntos
Carcinoma , MicroRNAs , Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Humanos , Masculino , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Estresse Oxidativo/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Sêmen , Motilidade dos Espermatozoides , Neoplasias Testiculares/genética , Fatores de Transcrição/metabolismo
13.
Cytokine ; 176: 156535, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38325141

RESUMO

Increasing evidence suggests the oncogenic role of missense mutation (AKT1-E17K) of AKT1 gene in meningiomas. Upon investigating the connection between the pro-tumorigenic role of AKT1-E17K and cellular metabolic adaptations, elevated levels of glycolytic enzyme hexokinase 2 (HK2) was observed in meningioma patients with AKT1-E17K compared to patients harboring wild-type AKT1. In vitro experiments also suggested higher HK2 levels and its activity in AKT1-E17K cells. Treatment with the conventional drug of choice AZD5363 (a pan AKT inhibitor) enhanced cell death and diminished HK2 levels in AKT1 mutants. Given the role of AKT phosphorylation in eliciting inflammatory responses, we observed increased levels of inflammatory mediators (IL-1ß, IL6, IL8, and TLR4) in AKT1-E17K cells compared to AKT1-WT cells. Treatment with AKT or HK2 inhibitors dampened the heightened levels of inflammatory markers in AKT1-E17K cells. As AKT and HK2 regulates redox homeostasis, diminished ROS generation concomitant with increased levels of NF-E2- related factor 2 (Nrf2) and superoxide dismutase 1 (SOD1) were observed in AKT1-E17K cells. Increased sensitivity of AKT1-E17K cells to AZD5363 in the presence of HK2 inhibitor Lonidamine was reversed upon treatment with ROS inhibitor NAC. By affecting metabolism, inflammation, and redox homeostasis AKT1-E17K confers a survival advantage in meningioma cells. Our findings suggest that targeting AKT-HK2 cross-talk to induce ROS-dependent cell death could be exploited as novel therapeutic approach in meningiomas.


Assuntos
Neoplasias Meníngeas , Meningioma , Humanos , Mutação com Ganho de Função , Hexoquinase/genética , Hexoquinase/metabolismo , Neoplasias Meníngeas/genética , Meningioma/genética , Estresse Oxidativo/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio
14.
Cells ; 13(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391909

RESUMO

Parkinson's disease (PD) is a common movement disorder associated with the degeneration of dopaminergic neurons in the substantia nigra pars compacta. Mutations in the PD-associated gene PARK7 alter the structure and function of the encoded protein DJ-1, and the resulting autosomal recessively inherited disease increases the risk of developing PD. DJ-1 was first discovered in 1997 as an oncogene and was associated with early-onset PD in 2003. Mutations in DJ-1 account for approximately 1% of all recessively inherited early-onset PD occurrences, and the functions of the protein have been studied extensively. In healthy subjects, DJ-1 acts as an antioxidant and oxidative stress sensor in several neuroprotective mechanisms. It is also involved in mitochondrial homeostasis, regulation of apoptosis, chaperone-mediated autophagy (CMA), and dopamine homeostasis by regulating various signaling pathways, transcription factors, and molecular chaperone functions. While DJ-1 protects neurons against damaging reactive oxygen species, neurotoxins, and mutant α-synuclein, mutations in the protein may lead to inefficient neuroprotection and the progression of PD. As current therapies treat only the symptoms of PD, the development of therapies that directly inhibit oxidative stress-induced neuronal cell death is critical. DJ-1 has been proposed as a potential therapeutic target, while oxidized DJ-1 could operate as a biomarker for PD. In this paper, we review the role of DJ-1 in the pathogenesis of PD by highlighting some of its key neuroprotective functions and the consequences of its dysfunction.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Estresse Oxidativo/genética , Antioxidantes/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteína Desglicase DJ-1/genética , Proteína Desglicase DJ-1/metabolismo
15.
Respir Res ; 25(1): 64, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302925

RESUMO

BACKGROUND: Among patients with chronic obstructive pulmonary disease (COPD), some have features of both asthma and COPD-a condition categorized as asthma-COPD overlap (ACO). Our aim was to determine whether asthma- or COPD-related microRNAs (miRNAs) play a role in the pathogenesis of ACO. METHODS: A total of 22 healthy subjects and 27 patients with ACO were enrolled. We selected 6 miRNAs that were found to correlate with COPD and asthma. The expression of miRNAs and target genes was analyzed using quantitative reverse-transcriptase polymerase chain reaction. Cell apoptosis and intracellular reactive oxygen species production were evaluated using flow cytometry. In vitro human monocytic THP-1 cells and primary normal human bronchial epithelial (NHBE) cells under stimuli with cigarette smoke extract (CSE) or ovalbumin (OVA) allergen or both were used to verify the clinical findings. RESULTS: We identified the upregulation of miR-125b-5p in patients with ACO and in THP-1 cells stimulated with CSE plus OVA allergen. We selected 16 genes related to the miR-125b-5p pathway and found that IL6R and TRIAP1 were both downregulated in patients with ACO and in THP-1 cells stimulated with CSE plus OVA. The percentage of late apoptotic cells increased in the THP-1 cell culture model when stimulated with CSE plus OVA, and the effect was reversed by transfection with miR-125b-5p small interfering RNA (siRNA). The percentage of reactive oxygen species-producing cells increased in the NHBE cell culture model when stimulated with CSE plus OVA, and the effect was reversed by transfection with miR-125b-5p siRNA. In NHBE cells, siRNA transfection reversed the upregulation of STAT3 under CSE+OVA stimulation. CONCLUSIONS: Our study revealed that upregulation of miR-125b-5p in patients with ACO mediated late apoptosis in THP-1 cells and oxidative stress in NHBE cells via targeting IL6R and TRIAP1. STAT3 expression was also regulated by miR-125b-5p.


Assuntos
Apoptose , Asma , MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Humanos , Alérgenos , Apoptose/genética , Asma/genética , Asma/complicações , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/metabolismo , Estresse Oxidativo/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Espécies Reativas de Oxigênio , Receptores de Interleucina-6/metabolismo , RNA Interferente Pequeno/metabolismo , Masculino , Idoso
16.
Ecotoxicol Environ Saf ; 272: 116067, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38325270

RESUMO

In order to comprehend the underlying mechanisms contributing to the development and exacerbation of asthma resulting from exposure to fine particulate matter (PM2.5), we established an asthmatic model in fat mass and obesity-associated gene knockdown mice subjected to PM2.5 exposure. Histological analyses using hematoxylin-eosin (HE) and Periodic Acid-Schiff (PAS) staining revealed that the down-regulation of the fat mass and obesity-associated gene (Fto) expression significantly ameliorated the pathophysiological alterations observed in asthmatic mice exposed to PM2.5. Furthermore, the down-regulation of Fto gene expression effectively attenuated damage to the airway epithelial barrier. Additionally, employing in vivo and in vitro models, we elucidated that PM2.5 modulated FTO expression by inducing oxidative stress. Asthmatic mice exposed to PM2.5 exhibited elevated Fto expression, which correlated with increased levels of reactive oxygen species. Similarly, when cells were exposed to PM2.5, FTO expression was up-regulated in a ROS-dependent manner. Notably, the administration of N-acetyl cysteine successfully reversed the PM2.5-induced elevation in FTO expression. Concurrently, we performed transcriptome-wide Methylated RNA immunoprecipitation Sequencing (MeRIP-seq) analysis subsequent to PM2.5 exposure. Through the implementation of Gene Set Enrichment Analysis and m6A-IP-qPCR, we successfully identified inhibitor of nuclear factor kappa B kinase subunit beta (IKBKB) as a target gene regulated by FTO. Interestingly, exposure to PM2.5 led to increased expression of IKBKB, while m6A modification on IKBKB mRNA was reduced. Furthermore, our investigation revealed that PM2.5 also regulated IKBKB through oxidative stress. Significantly, the down-regulation of IKBKB effectively mitigated epithelial barrier damage in cells exposed to PM2.5 by modulating nuclear factor-kappa B (NF-κB) signaling. Importantly, we discovered that decreased m6A modification on IKBKB mRNA facilitated by FTO enhanced its stability, consequently resulting in up-regulation of IKBKB expression. Collectively, our findings propose a novel role for FTO in the regulation of IKBKB through m6A-dependent mRNA stability in the context of PM2.5-induced oxidative stress. Therefore, it is conceivable that the utilization of antioxidants or inhibition of FTO could represent potential therapeutic strategies for the management of asthma exacerbated by PM2.5 exposure.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Asma , Quinase I-kappa B , Animais , Camundongos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Asma/induzido quimicamente , Asma/genética , Quinase I-kappa B/metabolismo , Obesidade , Estresse Oxidativo/genética , Material Particulado/toxicidade , Estabilidade de RNA , RNA Mensageiro/metabolismo
17.
Kaohsiung J Med Sci ; 40(2): 119-130, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38305705

RESUMO

Alzheimer's disease (AD) is a progressively debilitating neurodegenerative condition primarily affecting the elderly. Emerging research suggests that microRNAs (miRNAs) play a role in the development of AD. This study investigates the impact of miR-107-5p on neurological damage, oxidative stress, and immune responses in AD. We utilized APP/PS1 mice as AD mouse models and C57BL/6 J mice as controls. AD mice received treatment with agomir miR-107-5p (to overexpress miR-107-5p) or BAY11-7082 (an NF-κB pathway inhibitor). We evaluated learning and memory abilities through the Morris water maze test. Histopathological changes, hippocampal neuron distribution, and apoptosis were assessed using hematoxylin-eosin, Nissl, and TUNEL staining. Reactive oxygen species (ROS) levels, amyloid-Aß (Aß1-40/42) contents, and inflammatory factors (TNF-α, IL-6, IL-1ß) in hippocampal tissues were measured using ROS kits and enzyme-linked immunosorbent assay (ELISA). Microglial activation in hippocampal tissues was observed under a fluorescence microscope. miR-107-5p's binding to TLR4 was predicted via the TargetScan database and confirmed through a dual-luciferase assay. miR-107-5p expression, along with TLR4, APOE, and TREM2 in hippocampal tissue homogenate, and NF-κB p65 protein expression in the nucleus and cytoplasm were assessed via RT-qPCR and Western blot. Overexpression of miR-107-5p ameliorated hippocampal neurological damage, oxidative stress, and immune responses. This was evidenced by improved enhanced learning/memory abilities, reduced Aß1-40 and Aß1-42 levels, diminished neuronal injuries, decreased ROS and TNF-α, IL-6, and IL-1ß levels, increased APOE and TREM2 levels, and suppressed microglial activation. miR-107-5p directly targeted and inhibited TLR4 expression, leading to reduced nuclear translocation of NF-κB p65 in the NF-κB pathway. Inhibition of the NF-κB pathway similarly improved neurological damage, oxidative stress, and immune response in AD mice. miR-107-5p exerts its beneficial effects by suppressing the TLR4/NF-κB pathway, ultimately ameliorating neurological damage, oxidative stress, and immune responses in AD mice.


Assuntos
Doença de Alzheimer , MicroRNAs , Animais , Humanos , Camundongos , Doença de Alzheimer/genética , Apolipoproteínas E/metabolismo , Imunidade , Interleucina-6/metabolismo , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio , Transdução de Sinais/genética , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
18.
Medicine (Baltimore) ; 103(7): e35828, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38363895

RESUMO

Glioblastoma multiforme (GBM) is a highly malignant primary brain tumor with a poor prognosis. Reactive oxygen species that accumulate during tumorigenesis can cause oxidative stress (OS), which plays a crucial role in cancer cell survival. Clinical and transcriptome data of TCGA-GBM dataset from UCSC Xena database were analyzed. Consensus clustering analysis was conducted to identify OS-related molecular subtypes for GBM. The immune infiltrate level between subtypes were characterized by ESTIMATE algorithm. Differentially expressed genes (DEGs) between subtypes were screened by DESeq2 package. Two OS-related molecular subtypes of GBM were identified, and cluster 2 had poorer overall survival and higher immune infiltration levels than cluster 1. Enrichment analysis showed that 54 DEGs in cluster 2 were significantly enriched in cytokine/chemokine-related functions or pathways. Ten hub genes (CSF2, CSF3, CCL7, LCN2, CXCL6, MMP8, CCR8, TNFSF11, IL22RA2, and ORM1) were identified in GBM subtype 2 through protein-protein interaction network, most of which were positively correlated with immune factors and immune checkpoints. A total of 55 small molecule drugs obtained from drug gene interaction database (DGIdb) may have potential therapeutic effects in GBM subtype 2 patients. Our study identified 10 hub genes as potential therapeutic targets in GBM subtype 2 patients, who have poorer overall survival and higher immune infiltration levels. These findings could pave the way for new treatments for this aggressive form of brain cancer.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Estresse Oxidativo/genética , Espécies Reativas de Oxigênio , Agressão , Neoplasias Encefálicas/genética , Prognóstico
19.
Adv Sci (Weinh) ; 11(13): e2306929, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286671

RESUMO

Loss of E-cadherin (ECAD) is required in tumor metastasis. Protein degradation of ECAD in response to oxidative stress is found in metastasis of hepatocellular carcinoma (HCC) and is independent of transcriptional repression as usually known. Mechanistically, protein kinase A (PKA) senses oxidative stress by redox modification in its ß catalytic subunit (PRKACB) at Cys200 and Cys344. The activation of PKA kinase activity subsequently induces RNF25 phosphorylation at Ser450 to initiate RNF25-catalyzed degradation of ECAD. Functionally, RNF25 repression induces ECAD protein expression and inhibits HCC metastasis in vitro and in vivo. Altogether, these results indicate that RNF25 is a critical regulator of ECAD protein turnover, and PKA is a necessary redox sensor to enable this process. This study provides some mechanistic insight into how oxidative stress-induced ECAD degradation promotes tumor metastasis of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Estresse Oxidativo , Humanos , Caderinas/metabolismo , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
20.
Cancer Sci ; 115(3): 963-973, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38226414

RESUMO

Ectopic activation of rearranged during transfection (RET) has been reported to facilitate lineage differentiation and cell proliferation in different cytogenetic subtypes of acute myeloid leukemia (AML). Herein, we demonstrate that RET is significantly (p < 0.01) upregulated in AML subtypes containing rearrangements of the lysine methyltransferase 2A gene (KMT2A), commonly referred to as KMT2A-rearranged (KMT2A-r) AML. Integrating multi-epigenomics data, we show that the KMT2A-MLLT3 fusion induces the development of CCCTC-binding (CTCF)-guided de novo extrusion enhancer loop to upregulate RET expression in KMT2A-r AML. Based on the finding that RET expression is tightly correlated with the selective chromatin remodeler and mediator (MED) proteins, we used a small-molecule inhibitor having dual inhibition against RET and MED12-associated cyclin-dependent kinase 8 (CDK8) in KMT2A-r AML cells. Dual inhibition of RET and CDK8 restricted cell proliferation by producing multimodal oxidative stress responses in treated cells. Our data suggest that epigenetically enhanced RET protects KMT2A-r AML cells from oxidative stresses, which could be exploited as a potential therapeutic strategy.


Assuntos
Rearranjo Gênico , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Proto-Oncogenes , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Estresse Oxidativo/genética , Proteínas Proto-Oncogênicas c-ret/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA